Pulse compression with time-domain optimized chirped mirrors
نویسندگان
چکیده
منابع مشابه
Pulse compression with time-domain optimized chirped mirrors.
Dispersive optical interference coatings (chirped mirrors - CMs) are designed by computer optimization of an analytically calculated initial multilayer. Traditionally, the relevant properties of the CM (reflectance and the frequency-dependence of the phase shift upon reflection) are optimized to match frequency-domain targets. We propose a novel target function that quantifies directly the capa...
متن کاملPulse compression of submillijoule few-optical-cycle infrared laser pulses using chirped mirrors.
We report generation of 400 microJ, 13.1 fs, 1425 nm optical parametric amplifier laser pulses. Spectral broadening of a 100 Hz optical parametric amplifier laser source is achieved by self-phase modulation in an argon-filled hollow-core fiber, and dispersion compensation is performed using chirped mirrors. This laser source will be useful for ultrafast time-resolved molecular orbital tomography.
متن کاملCompression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors.
In the race toward attosecond pulses, for which high-order harmonics generated in rare gases are the best candidates, both the harmonic spectral range and the spectral phase have to be controlled. We demonstrate that multilayer extreme-ultraviolet chirped mirrors can be numerically optimized and designed to compensate for the intrinsic harmonic chirp that was recently discovered and that is res...
متن کاملOptimization of chirped mirrors.
We demonstrate that a highly efficient global optimization of chirped mirrors can be performed with the memetic algorithm. The inherently high sensitivity of chirped-mirror characteristics to manufacturing errors can be reduced significantly by means of the stochastic quasi-gradient algorithm. The applicability of these algorithms is not limited to chirped mirrors.
متن کاملRobust chirped mirrors.
Optimized chirped mirrors may perform suboptimally, or completely fail to satisfy specifications, when manufacturing errors are encountered. We present a robust optimization method for designing these dispersion-compensating mirror systems that are used in ultrashort pulse lasers. Possible implementation errors in layer thickness are taken into account within an uncertainty set. The algorithm i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2005
ISSN: 1094-4087
DOI: 10.1364/opex.13.010888